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Abstract. We repott first-principles calculations of the dependence of the lattice pammeter of 
Si on tempemure and on lhe isotopic composition. Around 80 K (the minimum of the thermal 
expansion coefficient) the 1auic-e panmeter difference of different isotopic compositions is largest 
and then it decrwes monotonically with increasing temperature. The results are explained in a 
simple physical picture. 

The phonon spectra [1-4] of two crystals built from the same atomic species but with a 
different isotopic composition are quantitatively different due to the direct dependence of the 
vibrational frequencies on the atomic masses. This mass dependence also implies a change 
of the specific heat and the crystal lattice parameter. Some influence on the electronic 
bands [S-71 is to be expected as well. In this paper we analyse the influence of the isotopic 
composition on the lattice parameter using a first-principles approach which is essentially 
identical to that used in our study of the anomalous thermal expansion of Si [8]. 

The work reported in this paper was motivated by some recent highly accurate 
experimental measurements of the lattice parameter of isotopic enriched Si crystals. These 
clystals may potentially be used for a more accurate determination of the Avogadro constant 
[9, 101 which then can lead to a new definition of the mass unit. It is interesting to note that 
the mass unit is the only unit in the SI system which is still defined by a real piece of material 
and not expressed in terms of fundamental physical constants. A Si crystal is particularly 
weU suited for precise measurements of the lattice parameter and Avogadro constant due 
to the relatively low concentration of intrinsic and extrinsic defects which normally cause 
some systematic errors. At this point a better and quantitative understanding of the isotopic 
composition and temperature effects is important. 

For normal pressure, i.e. when the pressure term of the Gibbs free energy can be 
neglected, the equilibrium cell volume V, is determined by the minimum of the Helmholtz 
free energy F [S, 111 

with respect to the volume V .  The sums run over all vibrational modes of frequency on(k), 
and kB is the Boltzman constant. The first term in (1) is the total energy as given by 
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density-functional theory. The second term gives the zero-point vibrational energy and the 
third term contains the energy and entropy contributions due to thermal excitations. We 
also noted as an argument of the function F the average mass of the nuclei. Obviously, it 
only enters via the vibrational frequencies. 

The phonon energies ho,  (IC) entering (1) are calculated by diagonalizing the dynamical 
matrix Dij = d2UShUc f dR, d R j  . For the purpose of obtaining the second derivatives of the 
total energy we use an analytical expansion of the (Ismtic up to second order in the atomic 
displacements in the form given by Keating [ 121. It is well known that the Keating model 
gives a good but certainly not very accurate description of the phonon band stmcturc. 
We would like to emphasize, however, that we are not interested in individual phonon 
frequencies on@) but 'only' in integral quantities of the band structure (see (1)). 

In order to determine the Keating model force constants we calculate two types of 
the second derivatives of the total energy. One of these quantitites is the bulk modulus 
B = V ( ~ 2 U s w l i c / ~ V z ) .  The second quantity is the force constant kb which is due to the 
change of the total energy under a breathing mode distortion of the four Si atoms around 
a particular lattice site. The theoretical value of B = 0.947 Mbar can be compared to the 
experimental one (0.992 Mbar) but kb is only available from calculations. The bulk modulus 
B and the force constant kb are related to the two Keating model parameters CY and B [ 111: 

S Biemacki and M Schejj¶er 

B = (I /U)(CY f 8/3) kb = 16a t 4 2 8 .  (2) 

In this way the force constants CY and p are determined as a function of volume (see figure 1) 
near the minimum of total energy UsmW"c. As these force constants depend on the volume our 
theory accounts partly for anhannonic effects. This is quasi-harmonic approximation. The 
higher-order derivatives of USaUc(V) over atomic displacements cannot be reliably estimated 
from our density-functional theory calculation and their influence on the equilibrium distance 
is neglected. From the dynamical matrix we then evaluate the phonon frequencies as a 
function of volume, and the minimum of the Helmholtz free energy F (which defines the 
equilibrium lattice parameter a )  is determined for any temperature of interest. Finally the 
linear thermal expansion coefficient 

CY, = f (g) 
P 

(3) 

follows from u(T). 
The natural composition of Si crystals is a mixture of different isotopes. In [IO] those 

are 92.232% of =Si, 4.677% of 29Si, and 3.090% of "Si, The average nuclear mass 
is thus M = 28.08538. The isotopic composition affects the lattice vibrations, thc greater 
inertia of the heavier isotope leading to lower frequencies. The method used for deriving the 
phonon spectrum differs from that used in our earlier calculations [PI, when we diagonalized 
the dynamical matrix of a finite cluster of about 500 atoms. Here we diagonalize the 
wave-vector-dependent dynamical matrix of an infiite crystal, with summation over 47 
independent wave-vectors in a 1/48 part of the Brillouin zone. We perform caiculations 
for three isotopically pure Si crystals because to a very good approximation [3] any real 
crystal can be treated as a virtual compostion of these three systems with a corresponding 
average mass. In figure 2 the thermal expansion coefficients for the three pure Si crystals 
are shown. The calculations reported in [SI were performed for a natural mixture ""Si 
of isotopes (i.e. for M = 28.085 38) and they are close to the present result for the "Si 
isotope. Around 80 K the linear expansion coefficient exhibits a minimum with a negative 
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value, which reflects a contraction of the crystal compared to the zero-Kelvin geometry. 
This contraction is maximal at 120 K (see figure 3). The calculations reproduce well the 
expansion coefficient for lower temperatures. The discrepancies between calculation and 
experiment for higher temperatures indicate the influence of higher- (than second-) order 
derivatives of Vsatic(V). These results show that at a given temperature the heavier isotope 
gives rise to a smaller lattice parameter. In figure 4 we show the differences Aa between 
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crystals of different isotopes. This figure shows that the relative difference is largest for 
temperature around 80 K and then decreases monotonically with the temperature increases. 
This behaviour is in agreement with measurements by Buschert et nl 131 for the Ge crystals 
with a natural and 7 4 G e - e ~ c h e d  composition. The measured ratio Aula was approximately 
twice as large at liquid-nitrogen temperature than at room temperature, Our calculations for 
%i and 29Si given Aula = -3.62 x 10-s at liquid-nitrogen temperature and -2.12 x 
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at room temperature. Buschert et a1 also performed a theoretical estimation for Anla based 
on the London theory [I31 of the variation in the crystal volume with isotopic composition. 
The starting point in this theory is the same as in the present calculation, i.e. thc cxpression 
(1) for the Helmholtz fhe energy. 
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When we analyse the sum of the second and third terms of (I), i.e. FYib as a function 
of the lattice parameter (see figure 5) we find that this quantity has a negative slope. This 
implies that the equilibrium geometry is at a bigger lattice parameter than the minimum 
of UsWnc(V). The reason is that C,,fiw,(k) is the leading term and it decreases with 
increasing crystal volume (we note that this holds only for the sum over all phonons). 
Obviously, the absolute value of the slope of Cnkf iwn(k)  is smaller for heavier atoms 
because o a l/&. Thus, as long as the term of the zero-point vibrations dominates the 
vibrational part of the free energy, it follows that heavier isotopes should give rise to a 
smaller lattice constant than lighter isotopes. 

The vibrational contribution to the Helmholtz free energy is due to the vibrational 
energy UWb and the vibrational entropy -SV”T (see also [SI). At zero temperature only 
UVib survives; thus, here the isotope dependence of the lattice parameter is a pure quantum 
mechanical effect. With increasing temperature the entropy term becomes dominant and 
acts in the opposite direction to the vibrational energy. Therefore the decrease of Aa (see 
figure 4) with increasing temperature is an entropy driven effect. 

In summary, we calculated the dependence of the lattice parameter for Si crystals 
composed of various Si isotopes. The relative difference in the lattice parameter for two 
neighbouring isotopes depends on the temperature and it is about 0.002-0.004%. This can 
be neglected in most measurements but it might be important in high-accuracy measurements 
like those relevant for the determination of the Avogadro constant. In those measurements 
the required accuracy of the lattice parameter is lo-* or better. We have discussed the 
origin of the effects and compared the calculated values of Aula for Si at liquid-nitrogen 
and room temperatures with results measured for Ge crystals. 
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